Error Handling
This guide covers comprehensive error handling strategies when using the ViewAI Python SDK.
Overview
The ViewAI SDK provides a structured exception hierarchy to help you handle errors gracefully. Understanding these exceptions and implementing proper error handling ensures robust, production-ready applications.
Exception Hierarchy
The ViewAI SDK uses a hierarchical exception structure:
ViewAIError (base)
├── AuthenticationError
├── ValidationError
├── APIError
├── NetworkError
├── ConfigurationError
├── DeploymentError
├── SchemaError
├── ExportError
├── TimeoutError
└── ModelErrorBase Exception: ViewAIError
All SDK exceptions inherit from ViewAIError:
ViewAIError Attributes
Common Errors
AuthenticationError
Raised when API authentication fails:
Common causes:
Invalid API key
Expired API key
Missing API key
Incorrect API key format
Solutions:
ValidationError
Raised when data validation fails:
Common causes:
Missing required features
Invalid data types
Values out of range
Invalid category values
Empty or null values
Solutions:
APIError
Raised when API requests fail:
Common status codes:
400: Bad request (invalid data)401: Unauthorized (authentication failed)403: Forbidden (insufficient permissions)404: Not found (model/workspace doesn't exist)429: Too many requests (rate limited)500: Internal server error503: Service unavailable
Solutions:
NetworkError
Raised when network operations fail:
Common causes:
Connection timeout
DNS resolution failure
Network unreachable
Connection refused
SSL/TLS errors
Solutions:
ConfigurationError
Raised when configuration is invalid:
Common causes:
Missing required configuration
Invalid configuration values
Incompatible configuration options
Solutions:
DeploymentError
Raised when model deployment fails:
Common causes:
Upload failure (network issues)
Invalid model format
Schema errors
Insufficient permissions
Storage quota exceeded
TimeoutError
Raised when operations timeout:
Solutions:
Error Handling Patterns
Basic Try-Except
Basic error handling:
Specific Exception Handling
Handle specific exceptions differently:
Context Manager Pattern
Use context managers for resource cleanup:
Decorator Pattern
Create error handling decorators:
Retry Strategies
Exponential Backoff
Implement exponential backoff for retries:
Retry with Jitter
Add randomness to prevent thundering herd:
Configurable Retry Strategy
Create configurable retry strategies:
Logging and Debugging
Configure SDK Logging
Enable SDK logging for debugging:
Custom Error Logging
Implement custom error logging:
Debug Mode
Implement debug mode for development:
Production Error Handling
Comprehensive Error Handler
Production-ready error handling:
Best Practices
See Also
Making Predictions - Prediction error handling
Training Models - Training error handling
Batch Processing - Batch job error handling
Configuration - Client configuration options
Was this helpful?