Error Handling

This guide covers comprehensive error handling strategies when using the ViewAI Python SDK.

Overview

The ViewAI SDK provides a structured exception hierarchy to help you handle errors gracefully. Understanding these exceptions and implementing proper error handling ensures robust, production-ready applications.

Exception Hierarchy

The ViewAI SDK uses a hierarchical exception structure:

ViewAIError (base)
├── AuthenticationError
├── ValidationError
├── APIError
├── NetworkError
├── ConfigurationError
├── DeploymentError
├── SchemaError
├── ExportError
├── TimeoutError
└── ModelError

Base Exception: ViewAIError

All SDK exceptions inherit from ViewAIError:

ViewAIError Attributes

Common Errors

AuthenticationError

Raised when API authentication fails:

Common causes:

  • Invalid API key

  • Expired API key

  • Missing API key

  • Incorrect API key format

Solutions:

ValidationError

Raised when data validation fails:

Common causes:

  • Missing required features

  • Invalid data types

  • Values out of range

  • Invalid category values

  • Empty or null values

Solutions:

APIError

Raised when API requests fail:

Common status codes:

  • 400: Bad request (invalid data)

  • 401: Unauthorized (authentication failed)

  • 403: Forbidden (insufficient permissions)

  • 404: Not found (model/workspace doesn't exist)

  • 429: Too many requests (rate limited)

  • 500: Internal server error

  • 503: Service unavailable

Solutions:

NetworkError

Raised when network operations fail:

Common causes:

  • Connection timeout

  • DNS resolution failure

  • Network unreachable

  • Connection refused

  • SSL/TLS errors

Solutions:

ConfigurationError

Raised when configuration is invalid:

Common causes:

  • Missing required configuration

  • Invalid configuration values

  • Incompatible configuration options

Solutions:

DeploymentError

Raised when model deployment fails:

Common causes:

  • Upload failure (network issues)

  • Invalid model format

  • Schema errors

  • Insufficient permissions

  • Storage quota exceeded

TimeoutError

Raised when operations timeout:

Solutions:

Error Handling Patterns

Basic Try-Except

Basic error handling:

Specific Exception Handling

Handle specific exceptions differently:

Context Manager Pattern

Use context managers for resource cleanup:

Decorator Pattern

Create error handling decorators:

Retry Strategies

Exponential Backoff

Implement exponential backoff for retries:

Retry with Jitter

Add randomness to prevent thundering herd:

Configurable Retry Strategy

Create configurable retry strategies:

Logging and Debugging

Configure SDK Logging

Enable SDK logging for debugging:

Custom Error Logging

Implement custom error logging:

Debug Mode

Implement debug mode for development:

Production Error Handling

Comprehensive Error Handler

Production-ready error handling:

Best Practices

1

Always Handle Exceptions

Never leave exceptions unhandled.

Bad:

Good:

2

Use Specific Exceptions

Catch specific exceptions when possible.

Less specific:

More specific:

3

Implement Retry Logic

Add retry logic for transient failures.

4

Log All Errors

Always log errors for debugging.

5

Provide User-Friendly Messages

Convert technical errors to user-friendly messages.

6

Fail Gracefully

Provide fallback behavior.

7

Monitor Error Rates

Track and monitor error rates.

See Also

  • Making Predictions - Prediction error handling

  • Training Models - Training error handling

  • Batch Processing - Batch job error handling

  • Configuration - Client configuration options

Was this helpful?